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Diffraction of sea waves by a slender body. 
Part 1. The shallow-water limit 
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S b  Paulo, SP, IPT, Brazil 

(Received 28 March 1985 and in revised form 9 June 1986) 

A uniformly valid theory (for all wavelengths and angle of incidence) is derived, 
correct to second order in the slenderness parameter. The leading-order contribution 
is the unified theory, derived by Newman (1978) and Sclavounous (1982), and it is 
shown here that for an important class of bodies - those with an ‘almost uniform’ 
cross-section - the leading-order correction is of higher order than second, and can 
be disregarded. 

In  part 1 of this work the shallow-water limit is considered, and some numerical 
experiments show good agreement between the observed error and the predicted one. 
In  part 2 (to follow) the theory is extended to the arbitrary-water-depth case, with 
similar results and accuracy. In  both cases i t  is assumed that the mean forward 
velocity is zero. 

1. Introduction 
Slender-body theory has been used in several branches of Applied Mechanics, most 

notably in aerodynamics. Its application to the diffraction of sea waves by a slender 
body has been impaired, however, by two difficulties. The first is the fact that there 
is now an extra lengthscale, the wavelength. The second is that the cross-section 
problem, essential for the formulation of this theory, was thought to be singular in 
head-sea incidence. These made it difficult to derive a single theory, uniformly valid 
for arbitrary wavelength and angle of incidence. 

This unified theory was finally derived by Newman and his collaborators. Two 
landmarks are the works by Newman himself (1978) and Sclavounous (1982), who 
removed the singularity in head-seas. In  spite of this, some practical and theoretical 
questions do remain. 

In  fact, their unified theory is valid for an infinite water depth and contains only 
the leading-order contribution in the small slenderness parameter E. These restrictions 
can be severe for applications in the offshore industry. Floating structures are usually 
moored in moderately deep waters and the assumption of infinite water depth can 
be questionable. Also these structures are not, as a rule, too slender. Barges and 
semi-submersible platforms, for example, both have a slenderness parameter of order 
E x 0.20 and the leading-order term has then an apparent error of order 20 % , which 
can be unacceptable. 

It seems necessary then to develop a unified theory, valid for arbitrary water depth, 
and correct to second order in the slenderness parameter. This is the purpose of the 
present paper. 

The derivation of such higher-order theory, however, brings out a technical, 
although important, question : how to measure, in a mathematically consistent way, 
the error of the asymptotic theory. This question can be properly answered only if 
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we choose some metric to gauge the distance between two functions, but this choice, 
in general, is never made explicit. Although vagueness on the specific choice of the 
metric is of no harm when deriving just the leading-order term, it can cause confusion 
if the purpose is to derive a theory with an error factor of the form [1+ 0(c2)]. 

Several reasons, to become clear throughout this work, have pushed us to use the 
metric of generalized functi0ns.t The inner consistency of the theory so obtained 
makes clear the adequacy of this choice and with it we could formalize some 
apparently plausible results. Among them one has an important practical applica- 
tion : if a body has a uniform cross-section the leading-order term already has an error 
factor of the form [1 +O(c2)]. This result motivated us to define a more general class 
of geometries for which the same sort of behaviour can be shown. We called it the 
class of bodies with an ‘almost uniform’ cross-section, and a precise mathematical 
definition will be given later in this paper. It will become evident then that the slender 
bodies used in the offshore industry all have an ‘almost uniform ’ cross-section and 
this is a fortunate circumstance : for these bodies we can use the simpler leading-order 
theory, keeping the accuracy within the acceptable 4 % margin of error ( E  x 0.20). 

To best grasp the subtle aspects of a theory, it is not uncommon to present it first 
in a simpler context. This is why we have addressed our attention here to the 
shallow-water limit, where the geometry is relatively simple. The same results, 
however, can be extended to water of arbitrary depth, as is shown in part 2. 

In $2 of the present paper we derive, in a brief way, the boundary-value problem 
that describes the diffraction of sea waves in shallow water. We also derive there some 
pertinent results for the related cross-section problem. 

In $3 we indicate the basic ideas and results of what we have called the classical 
approximations, namely, the Froude-Krilov approximation in the long-wave regime, 
the strip theory in short waves and the parabolic approximation in head-seas. The 
existence of these approximations in complementary ranges of application suggests 
the need for a single theory, and guides us to obtain it. 

In $54 and 5 we derive the inner and outer solutions, respectively. The development, 
so far, is rather standard and follows the ideas of the already classical method of 
matched asymptotic expansions. The real problem comes when we intend to obtain 
the inner expansion of the outer solution. To derive it in a mathematically consistent 
way we analyse, in 56, the Fourier transform in a certain class-B of functions. In this 
section and in the Appendix we introduce the whole mathematical apparatus of the 
present work. 

In $7 we derive the inner expansion of the outer solution, correct to an error of 
order c2 compared with 1. In $8 we complete the theory, matching the inner and outer 
solutions, and we analyse also the real effect of the second-order term for a body with 
a uniform cross-section. We introduce then, in a precise mathematical way, the class 
of bodies with an ‘almost uniform’ cross-section, and prove that the error factor of 
the leading term is of the form [ 1 + 0 ( c 2 ) ]  for this class of geometries. In $9 we present 
some numerical experiments that confirm the main results of the theory. 

2. The shallow-water equations 
In  this paper a raft resting on the free surface, symmetric with respect to the 

longitudinal axis, will be analysed. The geometric definitions are given in figure 1. 
The surface of the body will be denoted by S. The water is said to be ‘shallow’ 

if KO h Q 1,  where KO is the wavenumber and h is the water depth. The total potential 
t It would be correct to say ‘to measure the error in the space of the generalized functions’ since 

there is no metric strict sense defined in this space. 
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L L = l  

Incident 
wave 

FIGURE 1. Geometric definitions ( E  = B/L) .  

GT is the sum of the incident wave 6, and the scattered potential 6. In  the horizontal 
plane z = 0 it satisfies the boundary condition a6T/az = (02/g) 6T if (x, y) # S, and 
a&,/az = 0 if (2, y) E S. In the first expression iw is the wave frequency, and i t  is related 
to the wavenumber KO by the dispersion relation iw2h/g = (KO h)2 [1+ O(Ko h)2] .  
Integrating vertically the potential equation one obtains, with an error of the form 
[l +O(K,,h)2], the set of equations (see Yue 6 Mei 1981) 

(i) field equation, 

(ii) boundary condition on body’s surfaces, 
- 1  

V2@T = 0 for (x, y) E S, 
(iii) radiation condition, 

(aT-&,) - CHp)(Kor)  as r = ( ~ 2 + t ~ 2 ) 1 + 0 0 .  

This last condition is the standard outgoing condition for the scattered wave. We 
implicitly assumed the time factor exp (-iiwt), and the function H p ) ( .  ) is the Hankel 
function of the first kind. 

The incident wave is here given by 

&(x, y) = $,(y) eigozcosa,\ 

$,(y) = eiKogsina. J 
Consistent with (2.1) we d e h e  also 

6 T ( X ,  Y) = @dX, Y) iKozcosa,\ 

6 ( x ,  y) = @(x, y) eiKozcosa. 

Placing (2.1) and (2.2) into the set of equations above we obtain: 
(i) field equation, 

a 2 0  a@ aw 
aY2 ax ax2 
-+(KO sina)2@+2iKo cosa-+- = 0 for (x,y)#S, 

(ii) boundary condition, 

a@ a w  a w  
aY2 ax ax2 

(KO c0sa)~@+2iK, cosa-+- = g$, (y)  for (x, y)eS, (2.4) -- 

(iii) radiation condition, 

We should notice that the scattered potential is now being excited by a term that 
does not change with x. For an infinitely long body (l/s = 00)  we expect that both 
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a@/ax and a2@/ax2 should be zero and, in this case, the scattered wave should be 
determined by the cross-section problem. This is essential for the slender-body 
theory. 

The potential @(x, y) can be expressed with the help of the Green function 

G(z-E; y-7) = -aiH$,1)(Ko((z-E)2+ (y-y)2)k) e-i%(z-f)co*a, (2.6) 

The source density a([, 7) is the solution of the integral equation defined below, 

4x9 Y) = K2, @ T b ,  y) for (5, y) E s, 

This equation will be used later, in $9, when the results of the slender-body theory 
will be contrasted with the ones obtained from the full linear theory. 

2.1. The cross-section problem 
For an infinitely long uniform body, a@/ax = a2@/ax2 = 0,t and from (2.3), (2.4) and 
(2.5) we obtain, 

(i) field equation, 

3+ (K ,  sin = o (lyl> b ) ,  (2.9) 
dY2 

(ii) boundary condition, 

(iii) radiation condition, 

(2.11) 

The above set of equations defines the cross-section problem. In (2.11), R and T+ 1 

The solution of (2.9), (2.10), (2.11) is given by 
are the reflection and transmission coefficients, respectively. 

$*(y) = [A$+H(a)Ko U(Jyl-b)]eiKosina(lyl-b) (y $ fb), 

where H(a)  is the discontinuous function 

0 i f O < a < + n ,  
1 i f a=O.  

H(a)  = 

(2.12a) 
(IYl G b ) ,  

(2.126) 

We have introduced this function together with the parameter U ,  because of a 
peculiarity in head-seas (a = 0) to be explained later in this section. In what follows 
the value of U will be supposed known. 

t Throughout this work the symbols {$(y) ; &(y)} will represent the cross-section solution. They 
could change with z only due to the variation of the half-beam b = b(z) .  This dependence, however, 
will in general be omitted. 
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The four unknowns of (2.12a), { A t ,  A;, E, F), can be determined by enforcing 
continuity of pressure and flux along the line y = & b. In this way we can easily check 
that the coefficients A$ are solutions of the system 

where 
a, = !j cos a[cotanh (KO b cos a) + tanh (KO b cos a)], I 
a, = !j COB a[ - cotanh (KO b cos a) + tanh (KO b cos a)],j 

(2.13b) 

V$ = -cosa[tanh(K,b cosa) cos(Kob sina) 

T i  cotanh (Kob cosa) sin(Kob sina)]Ti sina eTiKobsina. 

In head-seas, the scattering matrix is real and has two eigenvalues 

I A ,  = a,+a, = tanhKob, 

A, = a, -a2 = cotanh KO b. 
(2.14) 

They will be needed later in this section. Before we give the explicit expressions 
for {E; F) it  is convenient to introduce some definitions. Let 

(2 .15~)  

(2.15b) 

Adding the incident wave to (2.12a), we obtain the total wave in the cross-section. 
In the region Iyl 2 b its expression is given by: 

(2.16) 

In  (2.16), {#T,S; #T,A} are the symmetric and antisymmetric parts of #T, respec- 

It is not difficult to check now that 
tively, and sign y = f 1 if y >< 0. 

(2.17) I [&(a) eiKo sins + cos (KO b sin a)] 1 
cosh (KO b cos a) 

E =  

F = RA(a) eiKobsina-i sin (Kob sina). 

We close this section with some results that will be needed later. They can be easily 
derived from the expressions given above. 
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(a) K o B  < 1 
Then 

RA(a) - O(KoB)  when KoB+O, sina - O(1). L::! ( 2 . 1 8 ~ )  

Actually a stronger result can be derived for RA(a) .  It is 

RA(a) - O(K0B)’ when KoB-+O, sina - O(1). (2.18 b)  

Expression (2.18b) is, however, a peculiarity of the shallow-water limit, or for 
bodies with shallow draught. 

( b )  0 < sina -4 1 
In this case 

&(a) N [ - 1 - i sin a (i- KO b)] (1 + 0 (sin2 a)).  (2.19 a) 

RA(a) ,., i sina ---Kob (1 + O  (sinza)). (12 1 (2.19b) 

when sina+O. In (2.19), A,,  A ,  are the eigenvalues of the scattering matrix in 
head-seas; see (2.14). 

In this limit we can also verify the important relation (for IyI < b)  

(2.20) 

The above expression shows that the total potential, although oontinuous in a, 
tends to zero as a+O. Or, in other words: &(y; a = 0) = 0 if U = 0 in (2.12a). To 
avoid this trivial solution we have added the term proportional to U in head-seas. 

( c )  a = 0 
In this case 

Rs(a)lu=o = - 1 + U (2.21a) 

(2.21 b)  

A close look at the expressions (2.19), (2.21a) and (2.20), (2.22) indicates that the 
place of -i sina when a + 0 is taken by U in the limit a = 0. This is certainly not 
accidental but it is a reflection of the fact that the cross-section problem is 
well-behaved and regular in the limit a = 0. These results are essential for the unified 
theory. 
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3. Classical theories 
It is usual, in ocean engineering, to say that a wave is long if its wavelength i s  of 

the same order of magnitude as the ship’s length (KO L - O(1) ) ;  if i t  is of the order 
of the ship’s beam, the wave is said to be short ( K o B  - O(1)) .  This nomenclature will 
be followed in this work, although the theory to be developed is also valid for very 
long and very short waves, KO L + 1 and KO B B 1 ,  respectively. 

The existence of an extra lengthscale - the wavelength - and the peculiar 
behaviour of the cross-section problem in head-seas, as discussed in $3 ,  make it 
difficult to derive a single asymptotic theory, valid irrespective of the wavelength and 
angle of incidence. 

The best way to understand the difficulty is to present three asymptotic theories, 
valid in complementary ranges of application. We have named them ‘ classical 
theories ’ although one, the parabolic approximation, has only recently been intro- 
duced in the field of sea waves, by Mei & Tuck (1980). All of them, however, share 
a common property: they are relatively simple and represent the leading-order 
contribution. 

3.1. FroudeKrilov approximation (long waves) 
For long waves, KO B - O(s) and the scattered potential is of order 6, see ( 2 . 1 8 ~ ) .  
Then, 

@&Y) = $I(?/) + o w  (3.1) 

This is the FroudeKrilov approximation. 

3.2. StrJp theory (short waves; sing - O(1)) 

In this case both the wavelength and the beam B are small compared with the length 
L. In  the first instance the body can be considered as if it had an infinite length, and 
the diffraction problem then coincides with the cross-section problem. So, 

This is the strip theory, and the error factor shown will be confirmed later. It is 
important to observe also that strip theory, although deduced for short waves, can 
also be used in the long-wave regime, since then $(y) - O(s); see ( 2 . 1 8 ~ )  and (3.1). 

3.3. Parabolic approximation (short waves; a = 0 )  
If the wave is short and a = 0, the diffraction problem is, in the first instance, similar 
to a head-sea incident on a semi-infinite cylinder. From this idea i t  is possible to 
approximate the field equation (2.3) by a parabolic equation, in a region relatively 
far from the bady. Details can be found in Mei & Tuck (1980), but the expansion of 
this solution when Iyl + O  is given by 

( 3 . 3 4  

Near the body the cross-section equation holds, and the solution is given by (2.22) 
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with \y( 3 b(x). By matching we determine U(x) = Q(x;0)/2Ko where Q(x) is the 
solution of Abel’s integral equation 

(l-KobAl) (Al = tanhKob). 
1 r=- 

2 K o 4  

(3.34 

This is the parabolic approximation. A similar result was first obtained by 
Faltinsen (1971) and further perfected by Maruo & Sasaki (1974). The outer solution 
here, however, is much easier than the one derived by Faltinsen and, in line with the 
simplicity of the other classical theories, we have chosen the parabolic approximation 
to represent the diffraction in head-sea. 

In  long waves the solution of (3.38) is of the form &(x) - 2K0A1(1+O(A1)), and 
so @&,y) = 1 +O(E);  see (3.3a). So the parabolic approximation is equivalent to 
Froude-Krilov in long waves and can also be used in this limit. 

4. The inner solution 
The method of matched asymptotic expansions distinguishes two regions : one close 

to the body, called the ‘inner region’, where Iyl/B < 0(1), and the other far from it, 
called the ‘outer region’, where Iyl/L 2 O(1). In  the inner region one feels the body’s 
boundary condition but misses the radiation condition. In  the outer region the 
opposite holds. The indeterminacy of each one is resolved by matching the inner and 
outer solutions in an ‘overlap’ region. 

In this section the inner solution will be worked out. In this case the radiation 
condition is missing and we must look only to (2.3) and (2.4). 

These equations can, however, be simplified. In  fact, the lengthscale in the 
x-direction is L, the ship’s length. So a@/& - O ( @ / L ) .  In  the inner region the 
lengthscale in the y-direction is B, the ship’s beam. So a@/ay - O(@/B).  The term 
a2@/ax2 is then of relative order e2 and can be disregarded. We obtain, in this way: 

(i) field equation, 

aw,  a@i 
-+(KO sina)2@i = -%KO cosa- (Iyl 2 b ( x ) ) ;  aY2 ax 

(ii) boundary condition, 

The suffix i is to indicate that this is the inner solution. The term 2iK0 cos a Wi/ax 
is of relative order B in short waves and must be kept, since we want to derive a theory 
correct with an error of the order 8. 

It is convenient then to write: 
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Placing (4.2) into (4.1) and separating terms of like orders we obtain: 

(a )  leading order (O(1)) 

(b )  second order (O(a)) 

Next, we shall analyse both sets of equations. 

4.1. The leading-order inner solution 
The most general solution of (4.3) is the sumt of a particular solution with the 
homogeneous one. A particular solution can be easily found, it is just the incident 
wave with negative sign. 

Equation (4.3) has two independent homogeneous solutions and a convenient way 
to express them has been proposed by Newman (1978). In  fact, he observed that the 
cross-section total wave $T(y) is a homogeneous solution of (4.3). So its symmetric 
and antisymmetric parts are two linearly independent homogeneous solutions of (4.3) 
and then the most general expression for @I1)@, y) is given by (see (2.16)), 

@l%, Y) = CfJl(x) A, S(Y) - cos (K,I~I sin a)] 

+sip?/[Al(z) #T, A(Y) -i sin (K&l sins)]- (4.5) 
The two arbitrary ‘constants’ {S,(z); A,@)} must, in general, depend on x and they 

will be determined by matching with the outer solution. In the strip theory the 
radiation condition (2.11) applies and the values of { S , ( x ) ;  A,@)} can be determined. 
They are obviously S,(x) = A,(%) = 1. 

4.2. The second-order inner solution 
The only difference here is the determination of a particular solution. Let sP(x,  y) 
be this function, where 

- 
@P(%,Y) = sP,S(2,Y)+(signY)mp,A(s,Y). (4.6) 

An explicit expression for 3p(z,y) can be worked out, but its expression will be 
omitted here. Once this function is known, we can write 

@i2)(x,  Y) = $T, S(Y) +3P, Y11-t (sip Y) [A2(x) h, A(?/) + s p ,  A(%, Y)]. (4.7) 
The two ‘constants’ {S2(z ) ;A2(z) }  can, again, be determined by matching with the 
second-order outer solution. 

t For ‘homogeneous solution’ we obviously understand a non-trivial solution of the homo- 
geneous system associated with (4.3) or (4.4). 

3 FLY 180 
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B = E ,  L = 1 then, using the scalingt i3z@/ay2 - O ( @ / E ~ ) ,  we obtain 
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The potential @[2)(x, y) is being forced by the term -2iK0 cosaa@ll)/ax. Since 

The above expression is important for the following reason : using the strip-theory 

@P@, Y) = [QIdy; 4 - 9*(?//)1(1+ O(4)’ (4.8b) 

where $,(Y ; x) depends on x only owing to the variation of the cross-section in the 
longitudinal direction. In general a$,/& - O(1) and, from (4.8a), @iz) - O ( E )  and 
must be computed. For a uniform cross-section, however, a#,/ax = 0 and, from 
(4.8b), we obtain a@il)/az - O(e).  In this case @i2) - O(e2) and it need not be 
computed. Or, in other words: the above reasoning seems to indicate that the 
leading-order term already has an error factor [l + 0 ( e 2 ) ] ,  when the cross-section is 
uniform. One of the outcomes of the present paper is just the formalization of this 
seemingly plausible result. 

approximation in (4.5) we get 

5. Outer solution 
In the outer region the body’s boundary condition is missed. So the ‘outer solution’ 

is a general solution of (2.3) and (2.5). But, since it must be matched with the 
inner solution, it should contain four arbitrary functions : {Q1(z) ; Q2(x)}, associated 
with the symmetric coefficients {Sl(x); SB(s)}, and {M, ( z )  ; M z ( x ) } ,  associated with 

For an observer in the outer region the slender body looks like a line emitting waves. 
{A&) ; A&)). 

It is natural then to write (see (2.6)) 

In  fact (5.1) is a solution of (2.3) and (2.5) and contains just the four functions 
needed for the matching. The suffix o is to indicate that this is the outer solution. 

The next step would be to match the inner and outer solution in an ‘overlap region’, 
where B Q IyJ 6 L. For this we need the ‘inner expansion of the outer solution’ - 
that is, the asymptotic behaviour of @,(x,y) when Iyl-+O - and also the ‘outer 
expansion of the inner solution’, or the behaviour of Gi(z,y) when Iyl-+O. 

The ‘outer expansion of the inner solution’ is always trivial. In this case i t  is given 
directly by (2.16) and (4.5) and the ‘overlap region’ coincides with the ‘inner region’. 
As we are going to see in part 2 of this work, this ‘outer expansion’ is equally easy 
in the arbitrary-water-depth case, 

The real problem is to derive the ‘inner expansion of the outer solution’. An 

t For long waves a4@/ax4 is of the same order as - 21K0 cos a a@/Bx. In this cam, also, the order 
of magpitude of @(*I is  given by (4.8a). 
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ingenious way to overcome this difficulty is indicated in Newman (1978) and it  is 
based on the following observation: the line integral that defines the ‘outer solution’ 
has the structure of a convolution integral. It seems natural, then, to take the Fourier 
transform of (5.1) with respect to x ,  to determine its limit when Iyl+O and then to 
take the inverse Fourier transform to get the ‘inner expansion of the outer solution’. 

Both Newman (1978) and Sclavounous (1982) were concerned just with the 
leading-order term so they didn’t have to worry too much about the actual behaviour 
of the Fourier transforms of the densities {&(z) ; M ( x ) } .  Here, however, we want to 
go a step further and it seems unlikely that we could have much success if such 
behaviour were not well understood. To this issue we dedicate the next section. 

6. The Fourier transform in the class B of functions 
In order to introduce a convenient class of functions where the densities 

{ & ( x ) ; M ( x ) }  can be located we follow an alternative route and deduce (5.1) directly 
from the representation of the scattered wave in the full linear theory; see (2 .7) .  

This is quite easy in the long-wave regime. In fact, the Green function in (2 .7)  is 
analytic in the outer region (Iyl/L 2 O(1)) and for long waves (KoB - O ( E ) )  we can 
write 

G(x - 5; y - q )  = [Q(x  - 5; y) -- - ( x -  E ;  y) (KO q )  (1 + 0(s2 ) ) ,  1 1 aG 
KO aY 

since 171 < B. Placing this expansion into (2.7) we obtain 

@@,Y) = @ & , Y ) ( l  +O(S2)) 

with 

( 6 . 1 ~ )  

(6.1 b )  

Expression ( 6 . l b )  gives an indication about the class of functions where the 
densities are. This class is the same as that containing the function b(x) ,  since the 
source density v(& q ) ,  being just the total wave beneath the raft, is a regular function 

Later in this paper we will confirm, in a more formal way, that the densities have 
of f .  

the same singularities as b(x)  has. We introduce now the form function g(x) ,  where 

( 6 . 2 ~ )  

g(0) = lim g(x), g(L) = lim g(x) .  (6 .2b)  
X 4 f  Z+L- 

Obviously g(x)  defines completely the geometry of the body and we can easily 
introduce now a class B of functions that covers all geometries of practical interest. 
This class will be designated by B[O; L] and it has the following properties: 

(i) g(x)  = 0 
(ii) g(x)  is continuous in 0 < x < L although dg/dx may be discontinuous at 

(iii) the singular points of dg/dx are well separated, in the sense that 

(iv) all derivatives of g(x)  exist, are continuous and of order 1 if x; < x < x;+~. 

if x < 0 or x > L ;  

xo = o , x 1 , x 2 , .  “ , X ,  = L ;  

I X , + ~ - X , ~  - O(1) f o r j  = 0,1, ..., (e-1);  

3-2 
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Obviously g ( x )  can be discontinuous at x = 0 and x = L, as it should be for a body 
with blunt ends. An important subclass of B[O; L] is formed by the bodies with 
pointed ends, defined below : 

B,[O; L] = {g(x) EB[O; L] such that g(0) = g(L) = O } .  

The class B[O ; L]  is sufficiently well behaved and we can derive some sharp results 
related to its Fourier transform. They are described below and elaborated in the 
Appendix. 

6.1. Fourier transforms, and the measure of the error 

Let P(x) E B[O; L] and consider the Fourier-transforms pair 

03 

P*(K)  = F[P(x)] = P(x)eiK5dx, 
- m  

As we shall see later in this section, the Fourier transform G*(y ;K)  of 
the Green function changes its behaviour drastically in short waves, when 
14 > O(Ko) - O(l/e). It turns out that to determine, in expression (5.1), the limit 
of @,*(y; K) when IyI + O  we must be restricted to the region 14 6 O(l/e). In  this way 
the densities P(x) = {&(x) ; M(x) }  are actually represented by the function 

A - 
P(x) = P*(K)  e-iKxdK ( A  %- l ) ,  

2x  - A  
(6.4) 

where, in our case, A - O(l /s ) .  

Appendix) that 
It is then necessary to check how closely F(x)  represents P(x). It can be shown (see 

' where 
/ I d P  d P  

dx 
A 4  = z(x;)--(x;) (j = O , l ,  ..., e ) ,  

D(z )  = - 2 Jzm si (t) dt, 

For a body with pointed ends (P(0)  = P(L) = 0) we obtain the simpler relation 

P(x) E B , [ O ;  L]. 
If we take A - O(l /s ) ,  as in general we will, then (6.7) has the desired error factor. 

A close look at D,(x) reveals that this function has a peculiar structure. Indeed, it 
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is of order l / A 2  if 1x-x,I - O(1) and of order 1/A when I Z - X , ~  4 O ( l / A ) .  Or, in short, 
it is of order l / A 2  'almost everywhere' (in this loose, but not strict, sense). This 
behaviour can be formalized if we gauge D,(x) in the space of distribution theory. 
With this motivation we introduce the following definition: 

Dejinition 1. We say that 

f(4 = g ( 4  ( 1  + O ( 4 )  (B > 01, (6.8a) 

if 

for every 'good function' !P(x). The 'good functions' are defined in Lighthill (1958). 
There are certainly other metrics that can equally well gauge the asymptotic error. 

Among them, one that is normally used is the metric of continuous functions that 
asserts a uniform error along the length of the body. This metric will be distinguished 
by the symbol =, as in (6.5), (6.7). It seems, however, that the measure (6.8) is more 
suitable for analysing the error factor of the present slender-body theory. Some of 
the reasons are indicated in the Appendix, but the adequacy of this choice is best 
realized by contrasting theory with numerical results. This will be done at the end 
of the present paper. 

With (6.8) we can easily show (see Appendix) that 
(a) if P(z)EB,[O;L],  then 

1 d n P  
An dxn 
-- 

With (6.9), the outer potential (5.1) can be written asp 

(b) if P(z)  E B[O; L] then 

P(z )  =P(,,[l+O(;)], 1 
1 dnF -- 

(6.11) 

These relations will be used in the next section. 

6.2. Fourier transforms of 8 m  special functions 
We shall list here the Fourier transforms of some special functions. They will be used 
in the next section. 

t Actually the error in (6.10) is of order l / h 2  Inh 4 O(l /h")  for any a c 2. We ignored the 
logarithm term in the following. 
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We start with the Green function (2.6). Following Erddyi (1954) we obtain 

G(z, y) = -$Ht)(Ko(X2+y2):) e-ixKocosa, 1 
exp ( i ( q -  ( K - K ,  cos a)'); Iyl) (6.13a) 

G*(y; K )  = F[G(z, y)] = -fi 
(Kt - ( K -  KO cos a)"i 

A particular case is given by 

h(z )  = i@)(Kol~l),\ 

The third Fourier-transform pair is defined below : 

0 (z < O ) ,  

(6.13 b) 

( 6 . 1 3 ~ )  

(In the Fourier transforms (6.13) we assumed 2/ - 1 = + i.) An important function 
is also introduced here. It is defined by 

I p ( z ; a )  = 9 ( P )  = F 1 [ P * ( K )  h*(K-Ko cosa)], 

(6.14) 

With the help of (6.9) and (6.11) we can write 

l p ( X ; C C )  = {P-'[P*(K) h*(K-Ko COSo1)]1~1~~}(1 + O ( l / h 2 ) ) ,  P(z)EBE[O;L], ( 6 . 1 5 ~ )  

or 

I~(z;oI) = {F-'[P*(K) h*(K-Ko  cosa)]lgl6A)(1 + O ( l / h ) ) ,  P(x)EB[O;L]. (6.15b) 

We notice that in (6.11), (6.12) and (6.15b) the error factor is O ( l / h ) ,  instead of 
O(l/A2) as for a body with pointed ends. As we will see later on, these results suffice 
for the present theory. 

7. The inner expansion of the outer solution 
In order to derive the inner expansion of the outer solution we will analyse first 

the three complementary ranges associated with the classical theories. In  this way 
we will study long waves (Froude-Krilov) in $ 7 . 1 ,  short waves with sin a - O( 1 ) (strip 
theory) in $7.2 and short waves with a = 0 (parabolic approximation) in $7.3. We 
will obtain three distinct asymptotic expressions, and in $ 7.4 we will derive a uniform 
expansion, valid for all wavelengths and angles of incidence. 

All these results will Jirst be derived for a body with pointed ends - or, more 
mathematicuZZy -under the assumption that P ( z )  = {&(x); M ( z ) }  €BEIO; L]. In $7.5 we 
analyse closely the consistency of the inner expansion so obtained and with this we 
can easily extend the result so derived to the whole class B[O; L]. This extension will 
be done in $7.6. 
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7.1. Long waves (KO - O(1)) 
For long waves the source strength r ~ ,  introduced in (2.8), is of order 1. From (6.1 b) 
it follows then that - o(s),  1 K o B  N O(s), 

M - 0 ( e 2 ) ,  J 
and from (5.1) Go - O(s) .  (7.2) 

So the scattered potential is of order e and this is just the Froude-Krilov 
approximation. To keep the overall error at order ea it is necessary here to 
approximate Go only with an error factor of the form [ l  +O(s)]. Taking the Fourier 
transform of (5.1) and using (6.9), (6.10), we obtain 

or, using (6.13a, b), 

@,*(y;K) = -!jiQ*(K)h*(K-K, cosa) exp(i(KE,-(K-Ko cosa)2)iIyl) 

+(signy)M*(K)exp(i(G-(K-K, OK0 cosa)z)tIyl)I (7.4) 

Since 14 G h - O ( l / d )  then, in the inner region Iyl - O(E), we have 

Developing the exponential of this factor in Taylor's series we obtain, with the help 
of (6.13b), 

when IyI - O(+ 

obtain 

@,*(y; K )  - {[-!jiQ*(K)h*(K-K, c o s a ) + ~ * ( ~ )  ~y~]+(signy)- 

or, taking the inverse Fourier transform, 

If we recall that M - O(e2) in the present case then, inserting (7.6) into (7.4), we 

KO 
(7.7) 

where we have used I (z ;a)  = .9(Q); see (6.14).t 
Expression (7.8) is the inner expansion of the outer solution in the long-wave 

regime. It has been deduced under the condition that M - O(s2) which is valid only 
in shallow water or for a body with shallow draft. In 97.5 we will see why this 
condition is not really needed. 

t To keep the notation short we will write I(s; a) in place of I&; a) = U(Q), see (6.14). 
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7.2. Short waves; sina - O(l)(Ko - 0(1/e)) 
If we take h - O(l/e) we obtain, with an error factor of the form [ l  +O(ez)], 

(7.9) I @,*(y;K) = [Q*(K)+-M*(K)-]G*(y;K)IlK14A, 1 a 
KO aY 

1(x; a )  = F'[Q*(K)  h*(K-Ko c o ~ a ) ] ~ ~ ~ ~ ~ ,  

where we have used (6.9), (6.10) and (6.15a). 
To properly analyse (7.9) in the inner region IyI - O(E)  we must deal with the radical 

f(A) KO = 2 A E E - ( y L j  KO sin2a KO sinza 
(7.10) 

that appears in G*(y;K)  and h*(K-Ko cosa); see (6.13). 

for (1  + t )*i ,  It1 < 1, to simplify (7.10). The conditionf(K/K,) I < 1 is fulfilled if 
We notice, however, that if If(K/Ko)I < 1 then we can use Taylor's series expansion 

(7.11) IKl < h = Ko( l - cosa )  - O(l/e). 

Using this h together with Taylor's series expansion of (7.10) we obtain 

and 

Inserting these relations into (7.9) we get, with an error factor of the form [ 1 + O(ea)], 
the expressions 

(7.15) 
and 

I (x ; a )  =-PF1[Q*(K)+-KKQ*(K)+ 1 81 Z " 8 ,  - K  n * K  Q ( )] . (7.16) 
KO sina KO n-z K t  IKl<A 
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We notice, however, that if P(z) = {Q(z) ; M ( z ) }  E B,[O, L] then, from (6.9), 

- P1 [ ( -i), ($jn P*(K)] - O(e2P) (n 2 2), (7.17) 
1 drip 

Kt  dxn IKlGA 

since KO - O(A) - O ( ~ / E ) .  

(7.12), (7.13), (7.14). From this fact and (7.17) we obtain 

~ ~ ( x ,  y) = { -1i 

In  the inner region (Iyl - O ( s ) ) ,  Kolyl - O(1) and so {&,A,,p,} - 0(1), all n; see 

1 dQ eiKo lyl sina 

KO sina 

when Igl - O(s) ,  (7.18) 

(7.19) 

eiKoIYI sina 
+ (sign Y 1 

and also 

I(z;a)  = 1 -[Q(z;a)-i--- . cosa 1 dQ 
KO sina sin2a KO dz 

In the above expressions we have used the relation 

; m41 = {Q(4 ; Wz)} (1 + O(EB)) ; 
see (6-9). 

From (7.18) and (7.19) we obtain also 

(7.20) 
@o(z, y) = eiKo Ivl sins 

2 KO sin a 

I(z;a) = - a) (1 + O(E)). 
KO sina 

But (7.20) is just the radiation condition (2.11) for the cross-section problem, with 
T = i(-i(Q(z;a)/Ko sina)+(N/Ko)) and R = t(-i(Q(z;a)/K, sina)-(MIK,)). So 
strip theory is correct with an error factor (1 +O(s)). 

Expression (7.18) is the inner expansion of the outer solution when the waves are 
short and sina - O(1). In  order to obtain an expression more similar to (7.8) we can 
compute Q(z; a)/Ko sina from (7.19) and use this value in (7.18). If we define then 

-+il(z;a) cos(Kolyl sina)+-- ’ Q(z;a) sin (~, ly l  sina)] 
2 KO sina 

we obtain 

(7.22) 1 
This inner expansion of the outer solution is equivalent to (7.18), although more 

convenient. In fact, since sina - O(l ) ,  we can recover (7.8) if we let KO - O(1) in 
(7.21) and (7.22). 
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7.3. Short waves; a = 0 (KO - O(l/e))  
In this case we obtain, with an error [l +O(e2)], 

for A - 0(1/e). In (7.23) we implicitly assumed M(x;O) = 0 since we will prove later 
that? 

M ( x ; u )  - O(sina) (a+O). (7.24) 

Taking A = 2Ko we can easily check that 

I(x;O) = P" Q*W) (1.--+...)I 1 K  . 
(2KKo)! 2 KO IK IQA 

If we now define the function (see ( 6 . 1 3 ~ ) )  

we obtain, from (7.25), 
I ( x ;  0) = J(x) (1 + O ( E ) )  - O ( E ~ & ) .  

(7.25) 

(7.26) 

(7.27) 

These relations will be used a little later. Expanding exp (i(2KKo-P)i Iyl) in power 
series in (7.23) we get 

or 
dI 

@,(x,y) = -!jiI(x;O)+!jlylQ(x;O)-'K I 12-(x;O)-~iKoly~3~(x;O) 
O y  dx dx 

- ~ i J y ( 2 - ( x ; 0 ) - & 1 y 1 3 ~ ( x ; 0 ) + .  d21 d2Q . .. (7.28) 
dx2 

The leading term is O(&), see (7.27). It follows, then, that the two last terms in 
(7.28) are, in the inner region, of relative order e2 and d ,  respectively, and can be 
disregarded. 

As a conclusion the inner expansion of the outer solution can again be written in 
the form (7.22) where, now, 

@Al)(x, y) = - t ' 4 x ;  1 0) +&I Q(x; 01, (7.294 

(7.29 b) @p)(x, y) = -!jKoly12~(x;O)-:iKoly13-(x;0). d I  dQ 
dx 

t Relation (7.24) is valid also for a non-symmetric cross-section. This is another peculiarity of 
the head-sea diffraction. 
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We should notice that ( 7 . 2 9 ~ )  agrees with (7.8) when a = 0, since M ( x ;  a)+O when 
a+O; see (7.24). Also, from (7.27) and (7.29a), we obtain 

@o(x, Y) - [ -iiJ(x) + i lYl &(x ; 0)lU + O(4), 

and this is just the inner expansion of the parabolic approximation; see ( 3 . 3 ~ ) .  

7.4. The uniform expansion 
Since (7.8) can be recovered from (7.21) (sina - O(1)) or from (7.29) (a = 0), when 
KO - O(l ) ,  it remains to check the compatibility between (7.21) and (7.29). 

To leading order we can easily see that 

lim @p)(x, y; a) = @p)(x, y;  O ) ,  

where the first expression is given by ( 7 . 2 1 ~ )  and the second by ( 7 . 2 9 ~ ) .  If we take, 
however, the limit of (7.21b) when a+O, we obtain 

a 4  

From (7.24), (KO sina)-ldM/dx is bounded when a+O and, as we are going to see 
later on, this term is actually zero for an ‘almost uniform ’ cross-section. It remains 
to analyse the even part of (7.30), but we observe that the place of the singular term 
(KO sina)-’dQ/dx is taken by dl/dx in (7.296). 

Expression (7.21) has been deduced, however, for sin a - O( 1) and in this case (7.20) 
suggests the relation 

(7.31) 

In reality we can demonstrate (7.31) for all &(x) cB[O; L] .  This demonstration is 
given in the Appendix and i t  uses explicitly the metric introduced in (6.8). From 
(7.31) it follows that the function 

~@i2)(z, y ;  a) = -4iy- cos a sin (K , I~ I  sina) (-- d&/& 9 
sin a KO sina dx ’ 

is of order e2 when sina - O(1). Adding this expression to (7.21b) we obtain a new 
@P)(z,y;a) not only continuous in a but that also agrees with (7.29) in the limit 
a + O .  

In order to write the uniform expansion we recall that, in fact, Q(5) = Q,(E)  +Q2(5) 
etc.; see (5.1). It follows then that 

( 7 . 3 2 ~ )  I 
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-tiIl(x;a) cos(Kolyl sina)+-- ’ Ql@j a )  sin ( K ~ I ~ I  sin a)] 
2 KO sina 

KO sina 
cos a cos a 

~ g ~ z ,  y ; a )  = -ii[(Ko sinan) S in(~ , ly~  sina)--lyl sin a c o s ( ~ , ~ y ~  sina) 

- i- cos a lyl sin (~ , ly l  sina) dz a, (z; a ) ]  
sin a 

In the above expression we have used the notation I j ( x ;  a) = 9(Qj), j = 1,2 ; see 
(6.14). Obviously @t& coincides with @:) with Q2 in place of Q1. 

7.5. Consistency of the inner expansion 
Expression (7.32) shows the nature of the outer potential in the overlap region 
IyI - O(s). In this part of the fluid domain, however, the field equation can be 
approximated by (4.3), (4.4) with IyI 2 b(x). We must then have 

(7.33 a) 

(7.33b) 

It is an easy task to confirm the validity of (7.33) and this shows quite clearly the 
consistency of the inner expansion (7.32). 

We observe also that the most general solution of (7.33b) is the sum of a 
homogeneous with a particular solution. The term @g)H(z, y;  a), see (7.32c), is just 
the homogeneous solution and @g’p(z, y;a) is the particular one, see (7.32d). 
Furthermore @i?-h(x, y ; a) is uniquely determined by the leading term @p)(z, y; a) 
since its only homogeneous contribution 

cos a dQJdx 
?$ sin (KO sinaly1)- KO sina’ KO sin2a 

is just needed for the particular solution in head-sea. 
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We must notice, also, that (4.3) and (4.4) have been derived from the basic 
assumption of the slender-body theory; namely, iff = f(x, y) then? 

- - O( f )  (O+ < z < L-), ax 

f N O ( { )  
aY 

( 7 . 3 4 ~ )  

(7.34 b) 

Expression (7.32), on the other hand, has been derived from ( 7 . 3 4 ~ )  and the explicit 
use of the metric (6.8). In the Appendix we show that, in fact, ( 7 . 3 4 ~ )  is in general 
true only in the metric (6.8). This circumstance certainly reinforces our belief that 
the asymptotic error must be measured in the metric of the distribution theory. 

From (7.333) and (7.34) we can formally derive ( 4 . 8 ~ )  and from this last expression 
we obtain that @(2)/@(1) - 0 ( e 2 )  when KO - O(1). In this case, however, - O(E) 
and so W) N O(e9).  Or, in other words, for long waves the leuding-order term is in  fact 
correct with an error factor of the form [ 1 + O(Z)]. This result is certainly independent 
of the condition M N 0 ( e 2 ) ,  as has been pointed out at the end of $7.1.  

7.6 Body with blunt ends 

In this case, using (6.11), (6.12) and (6.15b), we obtain, to leading order, the 
asymptotic approximation 

@,(z,?/;a) @p@, Y ; a ) ( l + O ( E ) )  (lyl N OW), (7.35) 

where @g)(z, y; a) is again given by (7.323). 
To obtain the second-order term @c)(z;y;a)  we should use a more precise 

expression for P(z)  than the one indicated in (6.5), but the analysis here is much 
more complicated. It seems more expedient to observe that the inner equations 
(7.33) continue to be valid provided that the ends are not too close, namely, if 
{z; L-z} 2 O(E) .  In this region @c)(z; y;a)  is a solution of (7.33b) and so it must be 
given by (7.32a, c ,  d )  as we have seen in $7.5. 

It remains to determine the error in the neighbourhood O(E)  of the ends, but 
the metric (6.8) seems to indicate that this local error should be of order E. 

This result can be formalized. In fact, if Oe(z, y;  a) is the exact solution and 
Ga(z, y;  a) = W ( z ,  y ;  a) + cD(~)(x, y; a) its asymptotic approximation, then consider 
the error A@@, y ; a )  = @&, y;a)-@&, y;a) .  But, from (7.34a), {(a@,/az); 
(a@,/az)} - 0(1) and so A@(x, y;  a) can increase only by a factor of order E in the 
neighbourhood E of the ends. So$ 

[ -O(e)  ({z; L - 4  < O(E)) 

1 N O ( E 2 )  ({z;L-z} - O(1)). 
A@(z,y;a) = @e(z,y;a)-@a(z,y;a) N (7.36) 

That is, A@&, y;  a) is of order e2 in the metric (6.8). The error behaviour (7.36) is 

The inner expansion of the outer solution is then given by (7.32) for all bodies with 

t We have avoided the points x = 0; x = L since dfldx can contain a Dirac function there. See, 

$ Note added in proof: relation (7.36) is not strictly valid for very short waves (KO % 11.s). See 

confirmed by the numerical experiments. 

form function g(z) E B[O; L ] ;  see (6.2). 

for instance, the form function g(x) for a body with blunt ends. 

$6 of Paper I1 for details. 
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8. Matching 
To determine the functions (S,(x); A , ( z ) ;  S,(z); A,(z)} of the inner solution (see 

(4.5), (4.7)) and the densities {&,(z); M , ( s ) ;  Q2(z); M,(z)} of the outer solution (see 
(5.1)) we must match the inner expansion of the outer solution (see (7.32)) with the 
outer expansion of the inner solution, given by (2.16), (4.5) and (4.7). We will do this 
in two steps. 

8.1. Leading-order matching 
Matching (4.5) (see also (2.16)) with (7.32b) we obtain 

@,(x;a) = (l-H)[l-S,(z;a)(Rs(a)+ l)]+H 
(8.1) 

(1 --H) iS,(z; a) Rs(a) + HS,(z ; 0) UK, = (1 - H) A 81(z;a)+&Ql(z; O ) ,  2 KO sina 

and 

From (8.2) we get? 

and from (8.1) 

I A,@; a) = 1 ,  

(8.4) 

where Q1(x; a) is the solution of the integral equation 

Both (8.4) and (8.5) seem singular in the limit a+O. If we use, however, (2.19) in 
(8.4), (8.5), and (2.20) in (4.5) we can easily check the continuity of the slender-body 
theory in the incidence angle. In particular (2.19) and (8.3) confirm that M(x;a)+O 
as a+O; see (7.24). 

To leading order we have then 

t In  shallow water, R,(a) - O ( 8 )  if the waves are long, see (2.18b). This confirms that M - O(e2) 
in this cctse; see $7.1. 
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where 
S l ( x ; a )  =-ti-- Qi(x; a) 1 

KO sin a Rs(a) ’ 

* KO sina &,(a) ’ 
Q I+&@) $iIl(x;a) = l+li& 

with I l ( s ;a )  = 9 ( Q 1 ) ;  see (6.14). 
From (8.3), (8.7) we can easily check that { Q ( x ) ;  M ( z ) }  have the same singularities 

as {Rs(a); RA(a)} and so of the form function g ( x )  = Zb(x)/B. Furthermore, sines 
{R,(a); R,(a)} = 0 if b = 0 (see (2.18), (8.1)), then from (8.3), (8.7) we obtain that 
{ Q ( x ) ;  M(s)}  = 0 in this cam. Or, in other words, { Q ( x ) ;  M ( ~ ) } E B [ O ; L ]  (or BEIO;L]) 
if g(z)EB[O;L] (or BEIO;L]). This result confirms the assumption made about the 
class of functions in which both {Q(z); M(x) }  reside. 

8.2. Second-order term for a uniform cross-eection 
To determine the second-order solution we must compute the particular solution 
(4.6) and match (4.7) with (7.32c, d). This matching is trivial now, since y; a) 
is already a solution of the inner equation (7.33b). In  what follows, however, we shall 
demonstrate that for a uniform cross-section the potential @La)@, y ; a) is of order E*, 

when the waves are short, and can be disregarded. 
In  fact, for a uniform cross-section 

and so (see (8.3), (8.6), (8.7)) 

dM - (2; a) = 0, dx 

where 

KO sin a &(a) ’ 
-@;a) dS1 = -#i-- 
dx 

Ul . dQJdx 1 +&(a) 
+-@;a) = ti- dx KO sina Rs(a) ’ 

(8.9) 

In  the Appendix we show that for short waves and an arbitrary P(x) E B[O; L] we 
have 

(8.10) 

(1 +O(E) )  (0+ Q x Q L-, sina - 0(1)), 
U P  dP/dx -@;a) = - dx KO sina 

where Ip(x; a) = Y ( P ) ;  see (6.14). 
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Placing (8.10) into (8.9) we obtain, with the help of (8.8),? 

(8.11) 

From ( 4 . 8 ~ )  (see also (7.33b) and (7.34)) we have 

Using (8.11) in the above relation we obtain finally 

@(2)(x, y ;  a) - O(S2). (8.12) 

Or, in short, for a uniform cross-section the leading-order term W ( x ,  y ;  a) is correct with 
an error factor of the form [1+ 0(e2)]. 

This important conclusion motivated us to look for a broader class of geometries 
where the same result also holds true. This class is defined below. 

8.3. 'Almost uniform' cross-section 
We should hope to extend (8.12) for bodies close, in some sense, to one that has a 
uniform cross-section. Since the geometry of the body is described by the form 
function g(x) and the exciting term in (7.333) is proportional to dgldx, it is convenient 
first to define these two functions for a body with uniform cross-section. In this case 
we have 

(8.13) 

The derivative of g,(x) exists only in the sense of generalized functions and it is 
given by (see (6.8)) 

x) Y(x)dx = Y(0)- !P(y(L). (8.14) 

Looking closely a t  the expression for W ( x ,  y ;  a) it is not difficult to see that 

(8.15) 

where the function Fu( . , . ; . ) is independent of the geometry.$ But in general the 
derivative of g(x) exists only as a generalized function and it is more precise to write 

(8.16) 
a m  
- (2, ?I; a) = FU(& 2, KO y ;  g(4 )  Dg(y3. ax 

If now g(x) is such that 

v) = Srn [dx) -g,(x)I w4 dz - O(4, (8.17 a )  

Dg( y3 = v(0) - p(L) + O ( E )  = Dg,( y3 + O(e) ,  (8.17 b) 
t In reality McO/az-O(l/Ko) when KO % 1.  So (8.11) holds even for very short waves 

$ For example: A,  = tanh (KO a(%)), see (2.14), and so (dA,/dz) (5) = P(5; KoB) Ibo(z) (dgldz) (2) 

-aJ 

(KO % 1/4. 

where F(5;  KO B) = tKo B cosh-2 (KO Bt) ,  independent of g(z). 
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then, in the metric (6.8), 

or 
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(8.18) 

where we have used (8.11) to write 

A body is said to have an ‘almost uniform’ crass-section if its form function g(z) 
satisfies (8.17). In this case a@(l)/az - O(e),  see (8.18), and then, from (4.8a) 

It remains, here, to characterize, in a clearer way, geometries that satisfy (8.17). 

(i) g(z) is continuous, integrable and of order 1 in the interval O+ B z < L-, 
(ii) g(z) = 0 if z < 0- or z 2 L+, 
(iii) g(z) = 1 + A , g ( z )  when A 6 B < L- A, where both d and A, are of order e and 

g(z) is continuous with derivative of order 1 in A Q z Q L-A. 
(iv) besides restriction (i), g(z) is arbitrary in the intervals O+ Q z Q d and 

L-d < z < L-. 
It is not difficult to check that if g(z) EB,[O; L] then conditions (8.17) are satisfied 

and so - O(c2). It is also quite clear that the slender geometries used in the 
off-shore industry are in the clam BJO; L). For such bodies, then, the leading term 
is correct with an error factor 1 +O(e2). It is important here to emphasize the role 
played by the metric (6.8) in the formalization of the present result. 

W)(z, y; a) - O(e2). 

We introduce, then, the class Bu[O; L] of functions g(x) such that: 

- 

9. Numerical experiments 
In order to check the theory we analysed the geometries indicated in figure 2, with 

E = B / L  = 0.20. 
To determine the ‘exact solution’ we solved numerically the integral equation (2.8) 

of the full linear theory. Using sucoeaaive discretizations we could extrapolate a 
numerical error of order 0.3%. Discrepancies below this value should not be 
considered. 

To present the results in an easier way we divided the body into 16 sections, section 
0 being placed at z = 0 and section 16 at z = L = 1. In each section we computed 

Obviously H(z;a) is the average value of the symmetric part of 0, and it is 
associated with the sectional heave force. M ( z  ; a) is related to the roll moment and 
it is the weighted average of the antisymmetric part of djT. 
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L = l  

FIGURE 2. Geometries used in the numerical experiments ( E  = 0.20). (a) 'Almost uniform' 
cross-section. (b)  Uniform cross-section. (e) Non-uniform cross-section. 

All numerical experiments have shown an error in M ( z ;  a) consistently smaller than 
the one in H ( z ;  a). Thus only the error in H ( z ;  a) will be presented and it is defmed 
by the formula 

(9-2) 

where H(z;a)lE is the (numerical) 'exact solution' and H(z;a)(, is the value we 
obtain from the approximations indicated below : 

H ( z ;  a) IE - H ( z ;  4 I *  loo % e ( x )  = 
H ( z ;  a) IE 

FK = Froude-Krilov approximation 

ST = strip theory 

PARAB = parabolic approximation 

SBT = slender-body theory, Zeading-order term. 

The geometries (a), (b) in figure 2 have been analysed for two wavelengths 
(KO L = 1, long wave ; KO B = 1, short wave) and three incidence angles (a = 0" ; 45" ; 
90'). Notice that body (a) has an 'almost uniform' cross-section and body (b) a 
uniform cross-section. Body (c), with a non-uniform cross-section, will be discussed 
later in this section. The results obtained are given in tables 1-6, and the last line 
gives the error of the resultant heave force. 

The observed error is certainly under suspicion below the value 0.3 % ) the assessed 
error of the numerical solution of the full linear theory. The error of the leading-order 
slender-body theory (SBT) must then be taken as being of order 0.3 % which is close 
to, although smaller, than the predicted one of e3 = 0.8 %. This is certainly due to 
the fact that diffraction is very weak here, as the error in FK, of order 5%,  shows. 

The parabolic approximation, with an average error of order 1.5 yo, improves the 
FK approximation, but it is important to notice that the error in strip theory, of 
order lo%, although consistent, is larger than FK. So the apparently more 
sophisticated ST worsens Froude-Krilov approximation in the long-wave regime. 
In the short-wave regime Froude-Krilov approximation has an error of order 

50 %, and this indicates the importance of diffraction in this case. Strip theory 
has an error of order 25 % , close to the estimated value of c = 20 yo, although the 
parabolic approximation has an error of order 5%, roughly one-quarter of the 
anticipated one. The leading-order slender-body theory has an error around 2 % , half 



Diflraction of sea waves by a slender body. Part 1 77 

Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Resultant 

Body (4 Body (6)  
FK ST SBT FK ST 
0 0 0 5.3 6.5 
4.2 2.1 0.04 5.7 6.8 
4.6 3.4 0.04 6.0 7 .O 
4.9 5.4 0.004 6.3 7.2 
5.1 7.7 0.12 6.6 7.3 
5.4 7.8 0.07 6.7 7.4 
5.5 7.9 0.05 6.9 7.5 
5.6 8.0 0.05 6.9 7.6 
5.7 8.0 0.04 I .o 7.6 
5.6 8.0 0.05 6.9 7.6 
5.5 7.9 0.05 6.9 7.5 
5.4 7.8 0.07 6.7 7.4 
5.1 7.7 0.12 6.6 1.3 
4.9 5.4 0.004 6.3 7.2 
4.6 3.4 0.04 6.0 7.0 
4.2 2.1 0.04 5.7 6.8 
0 0 0 5.3 6.5 

5.2 % 6.8 yo 0.05 yo 6.4 yo 7.2 % 

TABLE 1. Long waves (KO L = 1); a = 90". Percentage error (9.2). 

SBT 
0.38 
0.14 
0.08 
0.06 
0.05 
0.04 
0.04 
0.03 
0.03 
0.03 
0.04 
0.04 
0.05 
0.06 
0.08 
0.14 
0.38 

0.08 % 

Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Resultant 

Body (4 Body (a) 
FK ST SBT FK ST 
0 0 0 4.8 9.7 
3.9 1.4 0.05 5.1 9.7 
4.3 3.9 0.04 5.5 9.8 
4.6 7.3 0.01 5.8 9.9 
4.9 10.8 0.11 6.1 10.1 
5.1 11.0 0.07 6.4 10.3 
5.4 11.2 0.05 6.6 10.4 
5.5 11.3 0.04 6.7 10.6 
5.6 11.5 0.M 6.8 10.8 
5.6 11.7 0.04 6.9 11.0 
5.6 11.8 0.05 6.9 11.2 
5.5 12.9 0.07 6.9 11.3 
5.3 12.0 0.11 6.8 11.4 
5.1 8.7 0.01 6.6 11.5 
4.8 5.7 0.05 6.4 11.6 
4.4 3.6 0.05 6.1 11.6 
0 0 0 5.1 11.5 

5.1 % 10.0 % 0.04 % 6.2 % 10.7 % 
TABLE 2. Long waves (KO L = 1); a = 45". Percentage error (9.2). 

SBT 

0.38 
0.14 
0.08 
0.06 
0.04 
0.04 
0.03 
0.03 
0.03 
0.03 
0.03 
0.03 
0.04 
0.06 
0.08 
0.14 
0.38 

0.08 % 

of the predicted value of 1-2 = 4 %, and we notice that at the ends of a body with blunt 
ends (body ( b ) )  the error is of order lo%, almost half of the estimated value of 
E = 20 %, see (7.36). 

The observed errors follow, aa a rule, the theoretical predictions, but in general they 
are smaller, with one single exception, the error of strip theory in short waves and 
a = 45' is a little larger than 6 = 20 %. This certainly shows the importance of the 
longitudinal flow interaction for a body not too slender. 
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Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Resultant 

Body (4 Body ( a )  
FK ST SBT FK ST 

0 0 0 4.5 4.7 
3.8 49.6 0.045 4.8 3.8 
4.1 24.2 0.047 5.2 3.2 
4.4 15.6 0.022 5.5 2.8 
4.7 11.2 0.112 5.9 2.5 
5.0 2.3 0.066 6.1 2.3 
5.2 2.0 0.047 6.4 2.1 
5.4 1.7 0.037 6.6 1.9 
5.5 1.5 0.033 6.7 1.8 
5.6 1.4 0.035 6.8 1.7 
5.6 1.4 0.042 6.9 1.6 
5.4 1.5 0.060 6.9 1.6 
5.3 1.6 0.106 6.8 1.6 
5.1 17.1 0.017 6.6 1.7 
4.8 25.0 0.048 6.4 1.8 
4.5 49.6 0.048 6.1 2.0 
0 0 0 5.7 2.4 

5.0 yo 0.2 yo 0.038 yo 6.0 yo 1.5 yo 
TABLE 3. Long waves ( K , L  = 1); a = 0'. Percentage error (9.2). 

SBT 

0.38 
0.14 
0.09 
0.06 
0.05 
0.04 
0.03 
0.02 
0.02 
0.02 
0.02 
0.03 
0.03 
0.05 
0.07 
0.13 
0.37 

0.07 yo 

Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Resultant 

Body (4 
FK ST SBT 

0 0 0 
22.3 11.5 1.2 
29.0 4.4 1.3 
37.3 5.7 0.8 
45.5 12.5 2.7 
52.7 14.2 1.7 
58.1 16.8 1.4 
61.3 18.8 1.3 
62.4 19.5 1.3 
61.3 18.8 1.3 
58.1 16.8 1.4 
52.7 14.2 1.7 
45.5 12.5 2.7 
37.3 5.7 0.8 
29.0 4.4 1.3 
22.3 11.5 1.2 
0 0 0 

48.6 yo 20.2 yo 1.2 yo 
TABLE 4. Short waves (KO B = 1); a = 90". 

Body ( b )  
FK ST 

24.0 26.0 
31.4 19.4 
39.7 13.6 
47.1 9.8 
53.1 9.4 
57.6 11.4 
60.6 13.7 
62.4 15.2 
62.9 15.7 
62.4 15.2 
60.6 13.7 
57.6 11.4 
53.1 9.4 
47.1 9.8 
39.7 13.6 
31.4 19.4 
24.0 26.0 

49.5 70 7.7 yo 
Percentage error (9.2). 

SBT 

9.2 
2.6 
1.4 
1.1 
1.1 
1.2 
1.3 
1.4 
1.4 
1.4 
1.3 
1.2 
1.1 
1.1 
1.4 
2.6 
9.2 

1.8 yo 

From the theory we obtain also that the leading term of the slender-body theory 
should have an error of the form [l +O(s)] when the cross-section is 'non-uniform', 
as for body (c) in figure 2. It seems, however, difficult to assess this behaviour 
numerically as the analysis that  follows shows. 
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Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Resultant 

Body (4 Body (b)  
FK ST SBT FK ST 

0 0 0 17.0 49.1 
9.9 9.3 1.1 23.0 45.3 

14.9 19.9 1.4 29.1 42.5 
21.4 30.8 1.3 34.4 40.1 
27.9 41.2 3.3 39.1 37.2 
35.9 36.1 1.8 43.6 33.7 
42.5 31.3 1.1 48.3 29.5 
49.5 27.3 0.7 53.4 25.0 
56.9 24.8 0.4 59.0 20.8 
63.4 24.7 0.3 65.0 18.1 
68.6 26.9 0.5 70.9 17.8 
71.6 30.2 1 .o 76.5 20.2 
71.2 33.0 2.4 80.8 24.2 
67.8 32.3 1.8 82.8 28.3 
60.4 32.9 1.9 81.0 31.0 
51.7 35.8 1.5 74.3 31.1 
0 0 0 63.5 27.9 

48.2 % 25.5 yo 0.7 yo 54.9% 27.8 yo 
TABLE 5. Short waves (KO B = 1); a = 45'. Percentage error (9.2). 

SBT 
11.8 
4.5 
2.8 
2.0 
1.4 
0.9 
0.6 
0.3 
0.2 
0.4 
0.6 
0.7 
0.9 
1.2 
1.8 
3.2 

10.2 

1.8% 

Section 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

Resultant 

Body (4 Body (b)  
FK Parab SBT FK Parab 

0 0 0 15.6 23.3 
9.3 52.3 1 .o 21.5 9.4 

14.0 27.3 1.7 28.2 6.3 
19.8 17.3 2.2 34.5 5.1 
25.2 10.0 4.1 39.7 4.2 
31.4 4.9 2.5 44.1 3.4 
37.6 2.8 1.8 47.8 2.5 
44.2 2.8 1.4 51.6 1.6 
51.3 4.0 1.2 55.9 1.3 
58.9 5.4 0.9 61.4 2.2 
66.5 6.7 0.7 68.2 3.7 
73.0 8.0 0.5 76.1 5.3 
76.9 9.2 1.4 84.8 7.1 
78.9 25.1 2.6 92.9 9.0 
74.7 29.0 2.8 98.1 11.0 
67.4 49.5 2.1 97.1 13.0 
0 0 0 87.9 15.3 

45.8 % 1.5 yo 0.9 yo 54.1 yo 4.4 yo 
TABLE 6. Short waves (KO B = 1); a = 0'. Percentage error (9.2). 

SBT 

12.7 
5.0 
3.3 
2.4 
1.9 
1.5 
1.1 
0.9 
0.6 
0.4 
0.2 
0.2 
0.3 
0.6 
1.2 
2.7 
9.9 

1.6 yo 

In  fact, from the integral equation (8.7) we obtain, for short waves and sin a - O( l), 
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Section FK ST SBT 

0 0 0 0 
1 2.99 2.98 0.09 
2 3.66 7.26 0.15 
3 4.11 11.05 0.23 
4 4.89 13.88 0.29 
5 6.92 15.58 0.33 
6 10.44 16.13 0.33 
7 15.14 15.73 0.30 
8 20.82 14.66 0.26 
9 27.09 13.53 0.22 

10 33.72 13.28 0.26 
1 1  40.34 14.99 0.39 
12 46.38 19.02 0.55 
13 50.88 24.80 0.72 
14 52.48 31.28 1.11 
15 49.77 37.12 2.56 
16 42.55 40.94 10.37 

Resultant 33.14% 20.82% 1.02 yo 

TABLE 7. Error (9.2) for geometry (c), figure 2. Short waves (KO B = 1);  a = 45’. 

where we have used (7.20) and (7.31). It follows, then, that a@(l)/ax is proportional 
to {dR,/dx; dR,/dx}, or to Ko(db/dz) sina. Since the local transverse lengthscale is 
b(x), we obtain from (4.4) 

2K0b2(x )  
dx 

If e (x )  is the error of the leading-order term we can write (g (x )  = 2b(x) /B and B = E )  

dg e (x )  x +(KoB)2g2(x) - (x) sin 2a. 
dx 

For the geometry indicated in figure 2(c) ,  g(x) = x and so, when K o B  - 0(1), 

e (x )  x +x2 

or 

Such a value of the average error E can be numerically distinguished from e2 only 
when E $ A, in which case E << 0.6 yo. This is certainly a very difficult numerical task. 
For E = 0.20 the error is of order of 0.8% and the values in table 7 confirm this 
behaviour. 

In the neighbourhood of x = 0 the wave is actually very long, since the local 
transverse lengthscale is b(x) with Kob(x)  4 1. This is why the Froude-Krilov 
approximation worsens when x +  L = 1. The leading-order slender-body theory 
(SBT) has an average error of order 1 yo, close to the one predicted for this geometry, 
and at the blunt end x = L the error is of order 10 % , again half of the predicted value 
(equation (7.36)). 

On the whole there seems to be a good agreement between the observed errors and 
the predicted ones. The most important conclusion, however, is the demonstration 
that the leading-order term has an error factor of the form [1+ 0 ( e 2 ) ]  for a body with 
an ‘almost uniform ’ cross-section. This result explains why this approximation works 
so well even for a body with ‘blunt ends’. 
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Appendix. Fourier transform in the class B 
We assume first that P(z)  E BEIO; L] and let 

dp aP A 4  = z(~T)-z(zj-) (j = 0,1, ..., e ) .  

From the properties of the class B,[O ; L] and a routine analysis of Fourier transforms 
we can easily check that 

where 

PR(z) = -& jACO P*(K) e-iKx dK,  

PL(z) = & j-, P*(K) e-iKx dK. 
- A  

Using (A 1) in (A 4) we get 

If we define 

then from (A 3), (A 4), (A 5 )  we obtain 

If P(z) EB[O; L] we can write (0 d z < L) 

and so 

P(z) P(z)+  E A4Oj(z)+P(0)~(z)+P(L)~(s)] dD0 (l+O($)), [- ,Io 
P ( ~ ) E B [ O ; L ] .  (A 8 )  
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From (A 6) we get 
1 

D,(4 = - ~ w l x - q l ) 7  

(A 10) I m e-it 
where D(z)  = z[ sI',+Jz T d t ]  = -2Jzwsi(E)d5, 

si(fj) = - jEm 7 dt. 

Expression (A 10) can be obtained, after some algebra, by integrating e-it/t2 in the 
complex plane. 

From the properties of D,(z) we obtain 

or, with the definition (6.8), 

The function P(z) is certainly infinitely differentiable, and from (A 7), (A 8), (A 11) 

- we obtain 
P(2) = P(x)  [1+ O( 1/A2)] 1 

( P ( 4  E m ,  LI), (A 13) 

or P(4 = R4 11 + O( 1 / A l l  

O(1JA) (n = 1,2 , .  . .). 1 dnP 
An dxn 
--- 

These relations demonstrate (6.9), (6.11). We want next to show that, for short 
waves and an arbitrary P(x) E BIO ; L] we have, for O+ < 2 < L-, 

where I&; a) = Y ( P )  ; see (6.14). In order to do so we first introduce the function 

[= (O+ < 2 < L-),  
P ( x )  = dx 

I=o ( x < o -  o r x < L + ) .  

The function P(x) avoids the eventual Dirac &function of dP/dx in x = 0 or x = L. 
We define next 

Kolx-tI) e-ieo(z-E)cosa . (A16) 

The function P(z) is in a class s[O, L] with the same sort of singularities as B[O; A ] .  



Diffraction of sea waves by a slender body. Part 1 

It follows then that 
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(A 17) 

when KO B - O(1) (short waves). 
The function I,(.; a) is closely related to (Up/&) (2; a). In  fact, since 

g(s) = + e-iKoz C O s a  HP(KoIx1)2 
then, differentiating the above equality with respect to x and integrating by parts, 
we obtain 

(A 18) 
where 

- ox'1y} (A 19) 
x = x - L .  

If P(x) €BEIO; L]  then P(0) = P(L)  = 0 and (A 14) follows at once from (A 17), 
(A 18). In  the metric (6.8) the function AP(z;a) is associated with the linear 
functional 

- up (z ; a)  = fp(x ; a) + AP(z ; a),  
dx 

hp(z ;  a) = +[P(O) e-iKoz cosaH~)(Kolxl)  -P(L)  eiKoZcosaH(l)(K - 

AP( y) = jrn AP(z; a) Y(x )  dz (A 20) -, 
and we shall show next that for any P(x)eB[O;L]  we have, for short waves and 
sina - 0(1), 

(A 21 a )  

(A 21 b )  or 

and for short waves and a = 0 
A P ( x )  - O ( E ) .  (A 21 c) 

Obviously (A 21), together with (A 17), demonatrate (A 14) in the interval 
O+ < x < L-. To demonstrate (A 21) we observe that 
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where 
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(A 25) 1 
1 a J  

!Pl(z;a) = 

Tl (z ; a )  = 1 

Y( i )  e i K ~ ( z - ~ ) c o s u H ~ ) ( K o ~ x - ~ ~ ) d ~  = 9(m, 

r(6) e - i K ~ ( z - ~ ) c o s u H ~ ) ( K O ~ x - ~ ~ ) d ~  = 9(Q, 
aJ 

2 - w  
- 
Y ( x )  = Y( -2). 

Since both (F(x);  T(x)} are 'good functions' (see (A 25), (A 23), (A 20)), they are 
smoother than the functions in class B,[O;L] and so, using the results derived in 
SS7.2 and 7.3, we obtain 

(a )  short waves; sina - 0(1), 

!Pl(x; a )  = 9( - Y) = - y( -z )  ( l+O(s ) ) ,  

r l ( x ; a )  = 9(Q i - r(z) (1 +O(s)), 

KO sina 

KO sina 

( b )  short waves; a = 0, 
1 -i Yl(x;O) = Lf(m 

We emphasize that the approximations (A 26) and (A 27) are uniform in x since, 
in the class BEIO; L] ,  

P(x)  = P ( x )  (1 + O ( € ) ) ,  

see (A7). This is why we have used the symbol G ,  and from the uniformity we obtain 

(a )  short waves; sina - 0(1) 

(A 28) 

!Pl(O; a )  = - y(o) (1+0(€)), 
KO sina 

U O )  ( l+O(€))  = - y(L) ( l+O(E)) ,  q o ;  a) = - 
KO sina KO sina 

( b )  short waves; a = 0 

!P1(0;O) - O(s), l - , ( O ; O )  - O(s). 

Using (A 28), (A 29) in (A 24) and (A 22), we can easily check (A 21). In  this way 
we have demonstrated (A 14) in the whole class B[O; L] .  

The authors would like to acknowledge the help of Professor D. G. Crighton and 
the referees of this paper in helping to clarify this work. 
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